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Today

What When

Model fit and cross validation Week 3

Linear regression for data science Week 4

Classification Week 5

Interactive visualizations with R shiny Week 6

Tree-based methods Week 7

… …
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Main points for today

1. Recap: Estimating E(MSE) and cross-validation

2. Linear regression

3. Which variables shall I include in my model?

4. Conclusions

Feature / subset selection

Shrinkage / Regularization methods: Lasso and Ridge

·

·
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Recap



How to estimate the generalization error E(MSE)
app.wooclap.com/ADAV2024

In a different dataset from the dataset used to train the model! (we use the “out of sample prediction
error” to estimate the generalization error of our model)

General framework:

Often, the terms “validation set” and “test set” are used interchangeably

Key points:

Training dataset: To train the models

Validation dataset: To select the best model

Test dataset: To estimate the generalization error of the best model

·

·

·

We cannot use the training data to evaluate the generalization error

If we use some data to compare between models, the MSE of the best model is not an unbiased
estimate of the generalization error. We need a new dataset (the test data) to estimate the
generalization error.

·

·
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Why? Mainly to avoid overfitting

Suppose that you’re a teacher writing an exam for some students [models]. If you want to
evaluate their skills, will you give them exercises [observations] that they have already seen
[train set], and that they still have on their desks, or new exercises, inspired by what they
learned, but different from them? [different set] (jpl, stackoverflow)
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Complex models tend to overfit

See: https://javier.science/panel_bias_variance/
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Complex models and bias vs variance

E(MSE) = Bia (model) + Variance(model) + Variance(ϵ)s2

Bias: The error that is introduced by approximating a real-life problem, which may be extremely
complicated, by a much simpler model. High bias often results from underfitting.

Variance: The sensitiviy of our model to small fluctuations in the training dataset. Since the training
data are used to fit the statistical learning method, different training data sets will result in a different 

. High variance often comes from overfitting.

Variance(
): Irreductible error

·

·

f ̂
·

ϵ
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Complex models and bias vs variance (cont.)

Complex models will tend to overfit, and have high variance

Simple models will tend to underfit, and have high bias

·

·
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Which model
(top/bottom) has high
variance?
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Which model has high bias?
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Training/validation/test

Training set: Train your models

Validation set: Compare the models (i.e. calculate
MSE). Often re-used (but not too many times!).

Test set: Don’t touch it until the end!

Cross-validation

Training set: Train and compare your models using
cross-validation. Often re-used (but not too many
times!).

Test set: Don’t touch it until the end! Estimate E(MSE)
in the final model

Recap: Two alternatives to select the best model

The distributions of values in the different splits
should be similar
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What do we mean with comparing models?

Comparing statistical methods (e.g. linear regression vs knn regression)

Comparing models with different predictors included (e.g. linear regression including predictors [ , 
] vs [ , , ] )

Comparing two models with different hyperparameters (e.g. KNN regression using the closest 3 vs 10
neighbors)

·

· X1
X2 X1 X2 X3

·
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Linear regression



Linear regression

y = f (x) + ϵ

Data·

: Observed outcomes (dependent variable)

: p predictors (also called features, or independent variables)

: function to estimate

- Y
- X = , . . . ,x1 xp

- f
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Least squares linear regression
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Least squares linear regression

Goal: Find the parameters  that minimize the loss/cost/MSE

Source: Eric Eaton, Applied Machine Learning course

θ

(θ) = Cost(θ) = MSE(θ) = ( − ( )1
n ∑n

i=1 yi hθ xi )2

 = observed value 

 –> Prediction from our model for observation  (also seen as  or )

· yi i
· ( )hθ xi i ( )f ̂ xi yî
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Cost function: MSE

Source: Eric Eaton, Applied Machine Learning course

Goal: Minimize MSE ( )· (θ)

· (θ) = Cost(θ) = MSE(θ) = ( − ( )1
n ∑n

i=1 yi hθ xi )2
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Cost function: MSE

Source: Eric Eaton, Applied Machine Learning course

Goal: Minimize MSE ( )· (θ)
· (θ) = ( − ( )1

n ∑n
i=1 yi hθ xi )2
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Cost function: MSE

Source: Eric Eaton, Applied Machine Learning course

Goal: Minimize MSE ( )· (θ)
· (θ) = ( − ( )1

n ∑n
i=1 yi hθ xi )2
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Cost function: MSE

Source: Eric Eaton, Applied Machine Learning course

Goal: Minimize MSE ( )· (θ)
· (θ) = ( − ( )1

n ∑n
i=1 yi hθ xi )2
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The cost function is convex

Source: Andrew Ng, Machine Learning course
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How to find the optimal  (the ones that
minimize MSE)?

θ

Option 1: Using algebra

Option 2: Using gradient descent –> optimization technique used in many machine learning methods

·

·
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Gradient Descent: drop a marble in the curve
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Gradient descent

Source: Andrew Ng, Machine Learning course

Initiate parameters  randomly

Predict  (i.e., ) and calculate 

Move to a lower point in the curve

Repeat

· θ
· (x)hθ y ̂ (θ)
·

·
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Cost function

Source: Andrew Ng, Machine Learning course
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Cost function

Source: Andrew Ng, Machine Learning course

28/60



Cost function

Source: Andrew Ng, Machine Learning course

When we get to the bottom, we stop·
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How do we actually do this?

Calculus!

In practice: For each coefficient in the model, 

·

We want to know where is “down” in the curve—i.e. the gradient of the curve ( ) .

The gradient is the slope of the tangent line—i.e., the derivative of the MSE ( ).

- (θ)
- (θ)

· θj

New  = - θj − αθj
∂(θ)
∂θj

alpha = learning rate (a small value, can be adaptive)-
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Where are we?

Now:

We estimate the generalization error using out-of-sample prediction error (e.g. on a validation or test
dataset; or through cross-validation)

We can fit a linear regression using gradient descent

·

·

Which variables shall I include in my model?

Conclusions

·

Feature (subset) selection

Shrinkage / Regularization methods: Lasso and Ridge

-

-

·
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Which variables shall I include in my
model?



Quality of fit

Source: Eric Eaton, Applied Machine Learning course

Including too few variables: Model with high bias

Including too many variables: Model with high variance

·

·
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Often we have too many variables

Which ones do we select in the model?

Why do we want to select variables instead of adding all?

https://app.wooclap.com/ADAV2024

A very flexible model (one with many coefficients) is like a kid in candyshop with a platinum credit card: It
goes around buying all the coefficients it wants and never stops.

Idea: Tell the model not to go overboard with the complexity. We set up the correct complexity as the one
that minimizes MSE in the validation data.
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Constraining the complexity of the model

Feature selection:

Regularization:

Dimensionality reduction:

·

Pick the best  predictors

How: Best subset, forward selection, backward selection

- p
-

·

Constrain the sum of squared cofficients ( ) or absolute sum of coefficients ( ) to be below 

How: Adapt the loss function (e.g. MSE) to penalize including variables

- L2 L1 s
-

·

Combine variables that correlate (covered in aDAV II)

How: Unsupervised learning

-

-

35/60



10 minute break
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General framework of feature selection

For each level of complexity (number of predictors):

Estimate E(MSE) for models of different complexity using cross-validation –> Select best model

Estimate E(MSE) of the best model using test data

·

Fit x models of equal complexity –> Keep the best using e.g. MSE or - R2

·

·
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Feature selection I: best subset selection

1. Let  denote the null model, which contains no predictors. This model simply predicts the sample
mean for each observation.

2. For  (  = total number of predictors):

3. Select a single best model from among  using:

M0

k = 1, 2, . . . , p p
Fit all  models that contain exactly  predictors

Pick the best among these  models, and call it  (using e.g., smallest MSE or highest R2)

· ( )p
k k

fit all  models that contain exactly one predictor

fit all  models that contain exactly two predictors

and so forth

- p
- ( ) = p(p − 1)/2p

2
-

· ( )p
k Mk

, . . . ,M0 Mp

A measure that takes into consideration the number of predictors (e.g. AIC, BIC, adjusted-R^2)

Or better, cross-validated prediction error, e.g., MSE, or (1-R^2)

·

·
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Credit data set
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Best subset selection in the Credit data set

Train MSE in the credit data set

Careful! Train MSEs decrease with the complexity. We need to select using the validation MSE, not the
train MSE!
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Feature selection II: Forward stepwise

1. Let  denote the null model, which contains no predictors. This model simply predicts the sample
mean for each observation.

2. For :

3. Select a single best model from among  using:

M0

k = 0, 1, 2, . . . , p − 1
Consider all  models that augment the predictors in  with one additional predictor

Pick the best among these  models, and call it  (using e.g., smallest MSE or highest R2)

· p − k Mk
· (p − k) Mk+1

, . . . ,M0 Mp

A measure that takes into consideration the number of predictors (e.g. AIC, BIC, adjusted-R^2)

Or better, cross-validated prediction error, e.g., MSE or (1-R^2)

·

·
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Best subset selection vs Forward stepwise

Forward stepwise selection’s has a computational advantage (~  vs  models)

Though forward stepwise tends to do well in practice, it is not guaranteed to find the best possible
model out of all  models containing subsets of the p predictors.

For instance, suppose that in a given data set with p = 3 predictors, the best possible one-variable
model contains X1, and the best possible two-variable model instead contains X2 and X3. Then
forward stepwise selection will fail to select the best possible two-variable model, because M1 will
contain X1, so M2 must also contain X1 together with one additional variable.

· /2p2 2p

·
2p

·
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Best subset selection vs Forward stepwise
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Feature selection III: Backward stepwise

1. Let  denote the full model, which contains all  predictors.

2. For :

3. Select a single best model from among  using:

Mp p
k = p, p − 1, . . . , 1

Consider all  models that contain all but one of the predictors in , for a total of  predictors

Pick the best among these  models, and call it  (using e.g., smallest RSS or highest R2)

· k Mk k − 1
· k Mk−1

, . . . ,M0 Mp

A measure that takes into consideration the number of predictors (e.g. AIC, BIC, adjusted-R^2)

Or better, cross-validated prediction error, e.g., MSE or (1-R^2)

·

·
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Feature selection - number of models

Number of models fitted at each step, example for a dataset with 20 predictors:

Method Step 1 Step 2 Step 3 …

Best subset

 = 1

 20 models

 = 2

 190 models

 = 3

 1140 models

…

…

Forward

 = 0

20 - 0 = 20 models

 = 1

20 - 1 = 19 models

 = 2

20 - 2 = 18 models

…

…

Backward

 = 20

20 models

 = 19

19 models

 = 18

18 models

…

…

k

( ) =20
1

k

( ) =20
2

k

( ) =20
3

k k k

k k k
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Feature selection - pros and cons

Best subset
 Finds the best subset, as advertised – when there is enough data to find it
 Need to fit  models. With e.g., 20 predictors that is 1,048,576 regressions to run and evaluate. Not

even mentioning squares, cubes, products, etc.

Forward/backward
 Much more efficient,  instead of , e.g. 211 models for 20 predictors
 Not guaranteed to find the best subset

·
+
− 2p

·
+ O( )p2 O( )2p

−
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Forward vs. backward

Backward sometimes not even possible (e.g. p > n)

Forward can be fooled, especially when two variables work together but do nothing alone:

Both backward and forward are well-known to be bad at finding ‘true’ subset of predictors
 Reveled in several fields (e.g. social science);

For prediction, we do not care about the ‘true’ subset.

·

·

Backward considers performance of variable together with others.-

·
→

·
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Cross-validation in subset selection

Consider a regression used to predict an outcome:

How do we estimate the test set performance of this classifier?

https://app.wooclap.com/ADAV2024

Answer: You cannot use the same data to find the best predictors and to estimate E(MSE). Once a model
has seen the data, you cannot use the same data to estimate E(MSE). First split the data, always.

1. Starting with 5000 predictors and 500 cases, find the best 10 predictors

2. Fit a linear regression
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Penalized (regularized) regression: buying
coefficients on a budget

We want to fit the training data (estimate the weights of the coefficients)

Make the model behave ‘regularly’ by penalizing the purchase of ‘too many’ coefficients

Extremely efficient way to approximately solve the best subset problem: Variable selection +
regression in one step

Often yields very good results

·

·

·

·

If you are interested in prediction and not inference (i.e. if identifying the relevant features is not a
primary goal of the analysis), regularization will usually be better

·
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Regularization: buying coefficients on a budget

Usually, find the  (or sometimes we use the notation ) that minimizes

Now, find the  that minimizes

where the penalty is:

θj βj

(θ) = MSE = ( − ( )1
n ∑n

i=1 yi hθ xi )2

θj

(θ) = MSE + λ ⋅ Penalty

 –> (L1 Lasso) Tends to set some coefficients to zero (great for interpretability)

 –> (L2, Ridge) Tends to keep all coefficients

· | |∑j>0 θj

· ∑j>0 θ2
j
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Equivalent, minimize  subject to:

 = budget, “buying” coefficients cannot cost more than that

MSE

 –> (L1 Lasso) Tends to set some coefficients to zero (great for interpretability)

 –> (L2, Ridge) Tends to keep all coefficients

· | | < s∑j>0 θj

· < s∑j>0 θ2
j

s
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Increasing  will

Tip: Think about what happens when  increases. Do you get more or less predictors in the model?

https://app.wooclap.com/ADAV2024

Increasing  (decreasing s) will reduce the number of coefficients selected: Increase bias, decrease
variance

λ
λ

λ
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Ridge (L2) Lasso (L1) 

Penalization as ‘shrinkage’ to zero
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How to select 

Option 1:

Option 2 (better):

λ

Divide the data into train/val/test

Create models using different , fit them using the train data.

Calculate MSE in the validation data and select the best model.

Estimate generalization error for the best model in the test datast.

·

· λ
·

·

Divide the data into train/test

Use cross-validation, for each k split of train –> train/val:

Select the model with the minimum average MSE.

Estimate generalization error in the test datast

·

·

Fit models using different .

Calculate MSE in the validation dataset

- λ
-

·

·
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Standardizing predictors

We want to understand the effect of temperature in humidity.

If we use normal (least squares) regression, would it make a difference if we measure temperature in C or
F?

If we use penalized regression, would it make a difference if we measure temperature in C or F?

In penalized regression, adding predictors with a smaller mean (with a larger ) costs more. It is a good
idea to standardize your predictors to have a standard deviation of one.

θ
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Penalization in R

LASSO:

Ridge:

fit <- glmnet(x, y, alpha = 1, lambda = 1.5)

fit <- glmnet(x, y, alpha = 0, lambda = 1.5)

LASSO and ridge have a tuning parameter 

The usual least squares is 

Higher  stricter penalty  smaller budget 

Higher  ‘shrinks’ coefficients to 0

Can select  using cross-validation (cv.glmnet())

· λ
· λ = 0
· λ → → s
· λ
· λ

56/60



mtcars example: penalization using glmnet

Least squares LASSO Ridge

(Intercept) 12.30 33.59 21.20

cyl -0.11 -0.84 -0.34

disp 0.01 . -0.01

hp -0.02 -0.01 -0.01

drat 0.79 . 1.03

wt -3.72 -2.31 -1.44

qsec 0.82 . 0.19

… … … …
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mtcars example: selecting  with cross-validationλ
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Conclusions

Gradient descent is a very efficient way to fit/train models

By using feature selection or regularization, we can obtain better prediction accuracy and model
interpretability

Feature selection includes best subset, forward and backward selection

Regularization includes LASSO and Ridge

·

·

·

Best subset selection performs best, but it comes at a prize-

·

LASSO shrinks unimportant parameters to truly zero, while Ridge shrinks them to small values-
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Next class

Next week:

Supervised learning method: Classification (with Dr. Anastasia Giachanou).

Have a nice day!
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