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Today

What When

Linear regression for data science Week 4

Classification Week 5

Interactive visualizations with R shiny Week 6

Tree-based methods Week 7

Introduction to text mining Week 8
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Supervised learning: regression and classification
Classification: predict to which category an
observation belongs (qualitative outcomes)

Classification

Image from https://intellipaat.com/
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Many supervised learning
problems concern categorical
outcomes:

Classification: predict to which category an
observation belongs (qualitative outcomes)

Classification

Cancer: yes / no

Weather: sunny / cloudy /
windy / rainy / stormy

Banking data: default on
payment of debt

Images: cat / no cat, or
gazelle/tank/pirate/sea
lion/tandem bicycle/. . .

·

·

·

·
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Which one is a classification task?
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Types of classifications

Binary classification -> y: {0, 1}

Multi-class classification: {0, 1, 2, 3, …, N}

·

·
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Classification algorithms

k-nearest neighbors (kNN)

Logistic regression

Naive Bayes (NB)

Neural networks (deep learning)

Support vector machine (SVM)

Decision tree

Random forest (RF)

·

·

·

·

·

·

·
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Which algorithm to choose: Generalization

Generalization: How well does a learned model generalize from the data it was
trained on to a new test set?
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No Free Lunch Theorem

No universally best classification algorithm·
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Classification Algorithms



K-nearest neighbors (kNN)

One of the simplest (supervised) machine learning methods;

Based on feature similarity: how similar is a data point to its neighbor(s) and
classifies the data point into the class it is most similar to;

·

·
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kNN

How does kNN Algorithm work? – kNN Algorithm In R – Edureka
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kNN

How does kNN Algorithm work? – kNN Algorithm In R – Edureka

 = 3K
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kNN

How does kNN Algorithm work? – kNN Algorithm In R – Edureka

 = 7K
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kNN

How does kNN Algorithm work? – kNN Algorithm In R – Edureka
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kNN

Given the memorized training data, and a new data point (test observation):

Identify the  closests points in the training data to the new data point .
This set of ‘nearest neighbors’ we call 

· K x0
N0
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kNN

Given the memorized training data, and a new data point (test observation):

Identify the  closests points in the training data to the new data point .
This set of ‘nearest neighbors’ we call 

Estimate the probability that the new data point belongs to categroy  by

(so, the fraction of points in  whose response equal )

· K x0
N0

· j
Pr(Y = j|X = ) = I( = j)x0

1
K ∑i∈N0

yi
N0 j
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kNN

Given the memorized training data, and a new data point (test observation):

Identify the  closests points in the training data to the new data point .
This set of ‘nearest neighbors’ we call 

Estimate the probability that the new data point belongs to categroy  by

(so, the fraction of points in  whose response equal )

Majority vote: classify the test observation  to the categroy with the largest
probability

· K x0
N0

· j
Pr(Y = j|X = ) = I( = j)x0

1
K ∑i∈N0

yi
N0 j

· x0
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kNN points

Non-parameteric model: does not make assumptions about the dataset, no
fixed number of parameters;

Lazy algorithm: memorizes the training dataset itself instead of learning a
function from it;

Can be used for both classification and regression (but more commonly used
for classification);

Although a very simple approach, kNN can often produce classifiers that are
surprisingly good!

·

·

·

·
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Quiz

Apply kNN methods with k = 1, 3 and 5 to the data points below and find the
category of the test observation represented by (?) for each classifier.
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kNN

Results obtained with kNN highly depend on chosen value for , the number
of neighbors used

Small  (e.g.,  = 1): low bias but very high variance, ‘overly flexible decision
boundary’ (see next slides)

Large : low-variance but high-bias, ‘decision boundary’ that is close to linear

The optimal value for  needs to be determined using a (cross-)validation
approach

· K

· K K

· K
· K
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Example: Iris dataset

Iris is a (famous) dataset that contains species of flowers and various features of
the flower such as Sepal length and Sepal width
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Example: Iris dataset

And, for two species that are less well separated:
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Example: Iris dataset
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10 minute break
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Logistic regression

Models the probability that  belongs to one of two categories (i.e., a binary
outcome), for example:

Can be extended to model > 2 outcome categories: multinomial logistic
regression (not treated in this course)

Other option to model > 2 outcome categories: Neural networks, naive Bayes,
linear discriminant analysis (not treated in this course, but treated in ISLR)

· y

Smoking / non smoking

Pass / fail an exam

Survival / Nonsurvival

Default yes / no

-

-

-

-

·

·
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Logistic regression

(Example by Andrew Ng)
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Logistic regression

(Example by Andrew Ng)
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Logistic regression
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Logistic regression: logit

Classification: y= 0 or 1

Linear regression: can be <0 or >1

Logistic regression: the prediction is between 0 and 1

Solution: Use the logistic function

·

·

·

·
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Logistic regression

Why can linear regression not be used on this type of data?

Linear regression would predict impossible outcomes (  < 0 and > 1)

To avoid this problem, we use a ‘trick’: we use a logistic ‘link function (logit)’

· Pr(x)
·
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Logistic regression

This results in the following logistic function: Pr(Y = 1|X) = e + +...β0 β1X1

1+e + +...β0 β1X1

Advantage: all predicted probabilities are above 0 and below 1

Note: the linear predictor is contained in the exponent (i.e., )

For the example below: 

·

· e...

· Pr(Def ault = yes|balance) = e + balanceβ0 β1

1+e + balanceβ0 β1
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Logistic regression

The logistic function:  continued..Pr(Y = 1|X) = e + +...β0 β1X1

1+e + +...β0 β1X1

odds = 

ln(odds) 

So the linear part of the function models the log of the odds.

· = =Pr(Y=1)
Pr(Y=0)

pi
1−pi

e + +...β0 β1X1

· = + +. . .β0 β1X1
·
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Intermezzo: odds

Hence, when using logistic regression, we are modelling the log of the odds.
Odds are a way of quantifying the probability of an event .E

The odds for an event  are: 

The odds of getting heads in a coin toss is:

  

For a fair coin: 

· E odds(E) = =Pr(E)
Pr( )Ec

Pr(E)
1−Pr(E)

·

odds(heads) = =Pr(heads)
Pr(tails)

Pr(heads)
1−Pr(heads)

· odds(heads) = = 10.5
1−0.5
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Intermezzo: odds

Another example: The game Lingo has 44 balls: 36 blue, 6 red and 2 green balls

The odds of a player choosing a blue ball are

The odds of a player choosing a green ball are

Hence,

·

odds(blue) = = = = 4.536
8

36/44
8/44

0.8182
0.1818

·

odds(green) = = = ≈ 0.052
42

2/44
42/44

0.0455
0.9545

·

Odds of 1 indicate an equal likelihood of the event occurring or not
occurring

Odds < 1 indicate a lower likelihood of the event occurring vs. not
occurring

Odds > 1 indicate a higher likelihood of the event occurring.

-

-

-
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Logistic regression

Interpretation regression coefficients 

Making predictions:

· , , . . .β1 β2
Qualitatively: positive or negative effect of the predictor on the log of the
odds (logit)

Quantitatively: effect on the odds is 

Is the effect statistically significant?

-

- exp(β)
-

·

by filling in the equation , we can predict the

probability of the event to occur for a (hypothetical) case in our data

- Pr(Y = 1|X) = e + +...β0 β1X1

1+e + +...β0 β1X1
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An example: Titanic dataset

##                                            Name PClass   Age    Sex Survived
## 1                  Allen, Miss Elisabeth Walton    1st 29.00 female        1
## 2                   Allison, Miss Helen Loraine    1st  2.00 female        0
## 3           Allison, Mr Hudson Joshua Creighton    1st 30.00   male        0
## 4 Allison, Mrs Hudson JC (Bessie Waldo Daniels)    1st 25.00 female        0
## 5                 Allison, Master Hudson Trevor    1st  0.92   male        1
## 6                            Anderson, Mr Harry    1st 47.00   male        1
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An example: Titanic dataset

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.760 0.398 9.457 0
PClass2nd -1.292 0.260 -4.968 0
PClass3rd -2.521 0.277 -9.114 0
Sexmale -2.631 0.202-13.058 0
Age -0.039 0.008 -5.144 0

log_mod_titanic <- glm(Survived ~ PClass + Sex + Age, data = titanic, family="binomial")

Compared to being in 1st class (reference category)

Being male instead of female decreases your probability of survival

Being older also decreases your probability of survival

·

being in 2nd class decreases your probability of survival

being in 3rd class decreases your probability of survival

-

-

·

·
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An example: Titanic dataset

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.760 0.398 9.457 0
PClass2nd -1.292 0.260 -4.968 0
PClass3rd -2.521 0.277 -9.114 0
Sexmale -2.631 0.202-13.058 0
Age -0.039 0.008 -5.144 0

log_mod_titanic <- glm(Survived ~ PClass + Sex + Age, data = titanic, family="binomial")

odds ratio = . The odds of survival in 2nd class

are 0.275 times the odds compared to first class

odds ratio = . The odds of survival in 3rd class

are 0.080 times the odds compared to first class

· = = 0.275odds2ndclass
odds1stclass

e−1.292

· = = 0.080odds3rdclass
odds1stclass

e−2.521
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An example: Titanic dataset

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.760 0.398 9.457 0
PClass2nd -1.292 0.260 -4.968 0
PClass3rd -2.521 0.277 -9.114 0
Sexmale -2.631 0.202-13.058 0
Age -0.039 0.008 -5.144 0

log_mod_titanic <- glm(Survived ~ PClass + Sex + Age, data = titanic, family="binomial")
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Quiz: Predictions

The probability to survive for a:

30 year old female from 1st class?

45 year old male from 3rd class?

·

·
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Making predictions (function predict() in R):

The probability for a 30 year old female from 1st class to survive is:

The probability for a 45 year old male from 3rd class to survive is only:

 

·

Pr(Survival = yes| class, f emale, 30years) = = 0.931st e3.760−0.039∗30

1+e3.760−0.039∗30

·

Pr(Survival = yes| class, male, 45years) =3rd

= 0.04e3.760−2.521∗1−2.631∗1−0.039∗45

1+e3.760−2.521∗1−2.631∗1−0.039∗45
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Evaluating Classifiers



Evaluating classifiers

When applying classifiers, we have new options to evaluate how well a classifier
is doing besides model fit:

Confusion matrix (used to obtain most measures below)

Sensitivity (‘Recall’)

Specificity

Positive predictive value (‘Precision’)

Negative predictive value

Accuracy (and error rate)

ROC and area under the curve

For even more: https://en.wikipedia.org/wiki/Sensitivity_and_specificity

·

·

·

·

·

·

·

·

44/61

https://en.wikipedia.org/wiki/Sensitivity_and_specificity


Confusion matrix: Counts

You have trained a model on your training data and you now want to check the
performance of the model on the validation set.

In case of a binary outcome (e.g., survival yes or no), we either correctly classify,
or make two kind of mistakes:

Label an item that belongs to the positive class as negative (False negative)

Label an item that belongs to the negative class as positive (False positive)

·

·
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Confusion matrix: Counts

In case of a binary outcome (e.g., survival yes or no), we either correctly classify,

or make two kind of mistakes:

Label a survivor as someone who survived  True positive (TP)

Label someone who did not survive as non-survived  True negative (TN)

· →
· →

Label a survivor as someone who did not survive  False negative (FN)

Label someone who did not survive as a survivor  False positive (FP)

· →
· →
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Confusion matrix: Counts

Not survived Survivor

Survived (predicted)

No 372 (TN) 91 (FN)

Yes 71 (FP) 222 (TP)

Label a survivor as someone who survived  True positive (TP)

Label someone who did not survive as non-survived  True negative (TN)

Label a survivor as someone who did not survive  False negative (FN)

Label someone who did not survive as a survivor  False positive (FP)

Total errors: FN + FP

· →
· →
· →
· →
·
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Confusion matrix: Specificity

Not survived Survivor

Survived (predicted)

No 372 (TN) 91 (FN)

Yes 71 (FP) 222 (TP)

Measures the percentage of actual negatives which are correctly identified

Of the people who did not survive, which proportion did the model ‘find’

Specificity: 

·

·

· = 372/(372 + 71) ≈ 0.84TN
TN+FP

48/61



Confusion matrix: Sensitivity

Not survived Survivor

Survived (predicted)

No 372 (TN) 91 (FN)

Yes 71 (FP) 222 (TP)

Measures the percentage of actual positives which are correctly identified (or
recall or True Positive Rate)

Sensitivity: Of the people who survived, which proportion did the model ‘find’

Sensitivity: 

·

·

· = 222/(222 + 91) ≈ 0.71TP
TP+FN
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Confusion matrix: Specificiy and Sensitivity

Not survived Survivor

Survived (predicted)

No 0.84 (Specificity) 0.29 (1 - Sensitivity)

Yes 0.16 (1 - Specificity) 0.71 (Sensitivity)
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Confusion matrix: Accuracy

Not survived Survivor

Survived (predicted)

No 372 (TN) 91 (FN)

Yes 71 (FP) 222 (TP)

Measures the percentage of overall correct predictions

Accuracy (ACC): , Error rate: 1 - accuracy  0.21

·

· ≈ 0.79TP+TN
TP+FP+TN+FN ≈
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Confusion matrix: Pos and Neg predicted value

Not survived Survivor

Survived (predicted)

No 0.80 (NPV) 0.20 (1 - NPV)

Yes 0.20 (1 - PPV) 0.80 (PPV)

Negative predicted value (NPV): 
Of the people we predicted to not survive, which proportion actually did die

Positive predicted value (‘precision’): 

Of the people we predicted to survive, which proportion actually survive

· = 372/(372 + 91) ≈ 0.80TN
TN+FN

· = 222/(222 + 71) ≈ 0.76TP
TP+FP

·
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Thresholds

Moving around the threshold affects the sensitivity and specificity!

Moving the threshold especially makes sense when the predicted categories
are unbalanced. For example, many more non survivors compared to
survivors in the dataset.

·

·

with(titanic, 
     table(p_ped > 0.4, Survived))

##        Survived
##           0   1
##   FALSE 346  63
##   TRUE   97 250

with(titanic, 
     table(p_ped > 0.6, Survived))

##        Survived
##           0   1
##   FALSE 401 114
##   TRUE   42 199
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ROC curve

ROC curve is a popular graphic for simultaneously displaying the true and
false positive rate for all possible thresholds

TPR (sensitivity), percentage of actual positives (survived) which are correctly
predicted as survived

FPR (1 - specificity): proportion of actual negatives (non survivors) that were
incorreclty classified as survived and which are the FP

The overall performance of a classifier, summarized over all possible
thresholds, is given by the area under the curve (AUC)

·

·

·

·
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ROC curve - Titanic data

Not survived Survivor

Survived

(predicted)

No 0 0

Yes 443 313

Assume a very low threshold such as 0.01

TPR = Sensitivity: 313 / (313 + 0) = 1 (every survivor was correctly classified)

FPR = 1 - Specificity = 443 / (443 + 0) = 1 (every single passenger that did not
survive was classified as survived)

·

·

·

55/61



ROC curve - Titanic data

The higher the curve and the larger the area under the curve (AUC), the better
the classifier is

·
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Conclusion

Classification: predict to which category an observation belongs (qualitative
outcomes)

When predicting categorical outcomes (= classification)

We can use a completely non-parametric approach with kNN.

As no assumptions are made about the decision boundary, kNN will
outperform logistic regression when the decision boundary is highly non-
linear.

kNN does not give any information on the prediction process, e.g., which
variable is most important in providing an accurate prediction.

·

·

·
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Conclusion

When predicting categorical outcomes (= classification)

We can use a parametric approach such as logistic regression, modeling the
log of the odds with a linear function.

Provides both information on the prediction process (i.e., regression
coefficients) and predicted class probabilities for each observation.

To classify observations based on their probabilities, it can make sense to use
a different threshold than 0.50 (in case of binary data).

We can use various metrics based on the confusion matrix to assess
performance of classifiers.

More classification methods will be discussed in week 7!

·

·

·

·

·
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Final note

Lab session on Thursday.

Next week: Interactive visualizations with R shiny

Have a nice day!
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Extra



Parametric vs non-parametric classifiers

Generative classifiers try to model the data. Discriminative classifiers try to predict the label.

61/61


