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Should I bike to the Univeristy?

Is it raining?

Take the bus Is the temperature 
less then 5 degrees?

Take the bus Yes, take the bicycle

YES

YES

NO

NO



Main points for today

• Tree-based methods: segment predictor space into a number of
simple regions
• Using decision trees for prediction
• Improvement 1: Bagging
• Improvement 2: Random forests
• Approximate the test error using the Out of Bag (OOB) error
• Variable importance measures
• Conclusions



Decision Trees
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Basics of Decision Trees

• Shall we go to a picnic?
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Basics of Decision Trees
Features: 
x1: precipitation
x2: temparature

labels y: 
1: picnic
0: no picnic
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Yes No

Yes No

Yes No



Basics of Decision Trees
- Internal nodes
- Two children that can be: 
 - internal node 
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Basics of Decision Trees
- Internal nodes
- Two children that can be: 
 - internal node 
 - leaves or terminal node
- Connections with branches

Temp < 15 No picnic

Precipitation < 4

No picnic Temp < 30

No picnicpicnic

Yes No

Yes No

Yes No



Build a decision tree

1.Divide the predictor space — that is, the set of 
possible values for X1,X2, . . . ,Xp — into J distinct and 
non-overlapping regions, R1,R2, . . . ,RJ .
2. For every observation that falls into the region Rj , 
we make the same prediction, which is simply the 
majority class of the outcome for the training 
observations in Rj . 
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Basics of Decision Trees

• Shall we go to a picnic?
precipitation

Temperature
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0

Precipitation = 1
Temperature = 10

Temp < 15 No picnic

Precipitation < 4

No picnic Temp < 30
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Growing decision trees from data

• Recursive (binary) partitioning: 
1. Find the split that makes observations as similar as possible on the outcome 

within that split; 
2. Within each resulting group, do (1). 

• Early stopping: add after (2): 
• ‘unless there are fewer than nmin observations in the group’ (typically 

10)



Growing decision trees from data

• Criteria for ‘as similar as possible’: reduction in classification error rate 
such as the Gini impurity or entropy
• Gini impurity:

• ^pmk is the proportion of training observations in partition m with 
category k
• Small value: almost all values in the partition belong to one class
• Gini index is a measure of node impurity: small value indicates that a 

partition contains predominantly observations from a single class



Gini impurity

precipitation

Temperature
35

5mm

-5
0

For k = 0: 9/9 * (1-9/9) = 0
For k =1: 0/9 * (1-0/9) = 0

G = 0 + 0 = 0

Precipitation < 4

No: 9
Yes: 0

Yes No

No: 14
Yes: 11

For k = 0: 14/25 * (1-14/25) = 0.24
For k = 1: 11/25 * (1-11/25) = 0.24

G = 0.49



Choosing Features

• Key Idea: good features partition the data into subsets that are either 
“all positive” or “all negative” (ideally) 



Tree building: top-down and greedy

• Recursive (binary) partitioning is a top-down and greedy algorithm: 
• Top-down: algorithm begins at the top of the tree and then 

successively splits the predictor space. Each split is indicated via two 
new branches further down on the tree. 
• Greedy: at each step, the best split for that step is made, instead of 

looking ahead and picking a split that will result in the best tree in a 
future step. 



Regression Trees



Regression Trees

• Decision trees can be used for regression as well!
• Instead of predicting class label in each ‘box’ (partition), we predict 

the outcome in each partition:
• mean of the training observations in the partition to which the test 

observation belongs

• Cutpoints are selected such that splitting the predictor space into the 
regions leads to the greatest possible reduction in residual sums of 
squares (RSS).
• CART: classification and regression trees



Regression Trees

Temp < 5 0

Precipitation < 4

20 Temp < 30

1050

Yes No

Yes No

Yes No

Features: 
x1: precipitation
x2: temparature

y: 

- minutes of outdoor training



precipitation

Temperature
35

5mm

-5
0

0

50
60

30

0
0

10

R1

R2 R3

Temp < 5 0

Precipitation < 4

20 Temp < 30

1050

Yes No

Yes No

Yes No

10

30
10

0
0

R4

20

0

40

50
60

40

R1

R2

R4R3

Regression Trees



How to construct regions?

• The goal is to find boxes R1, . . . ,RJ that minimize the RSS

• Computationally infeasible to consider every possible partition 
of the feature space into J boxes



Pruning

• Process described to grow trees most likely overfits the data → poor 
test performance
• Solution 1: build the tree until the decrease in classification error / 

RSS exceeds some threshold
• This strategy will result in smaller trees
• However, a seemingly worthless split early on in the tree might be 

followed by a very good split
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• Grow a large tree and then prune it back

• |T| is the number of terminal nodes
• Rm is the rectanclge that corresponds to the mth terminal node
• The tuning parameter a controls a trade-off between the subtree’s 

complexity and its fit to the training data

Cost Complexity Pruning



Full tree
a = 0

Subtree 1
a = 10.000

Subtree 2
a = 15.000



Cost Complexity Pruning

• α=0 → subtree equals the original (long) tree
• As α increases, becomes more expensive to have a tree with many 

terminal nodes, resulting in a smaller subtree. Very similar to Lasso!
• Use K-fold cross-validation to choose α.



Linear Models VS Trees

•Which model is better? 
• It depends on the problem at hand



Which of the panel(s) below cannot be representative of a decision tree model using recursive binary splitting?

A. B.

C. D.



Summary

üTrees are very easy to explain 
and interpret

üMirror human decision-making 
better than other the regression 
and classification approaches

üTrees can be displayed 
graphically (sometimes)

üDetects non-linear relationships

Do not have the same level 
of predictive accuracy than 
other approaches
They are prone to 
overfitting: a small change 
in data can cause a large 
change in the final tree

Bagging and Random Forests



10 minutes break



Bagging



Intuition behind bagging

When you fiddle with the observations just a little:
1. Some things vary a lot;
2. Some things stay pretty much the same.

Intuition:
• Overfitting is caused by (1);
• but (1) happens randomly, causing predictions to go up or down 

haphazardly;
• Therefore, (1) should be cancelled out by fiddling with the observations a 

little and averaging
• “Wisdom of the crowds”



Bagging

• Bootstrap aggregation, or bagging (Breiman 1994):
• A general-purpose procedure for reducing the variance of statistical 

learning methods. It is very useful and often applied in the context of 
decision trees
• Averaging a set of independent observations reduces variance. But 

what if we only have one training set?



Bagging

• We can mimic having multiple training sets by bootstrapping:
• Generate B different bootstrapped training data sets.
• Train a decision tree on each of the bth bootstrapped training set to get a 

prediction for each observation x:
• For regression trees, we average all predictions to obtain:

• For classification trees, we take the majority vote
• Do not need to prune: grow large trees in each bootstrapped sample, and 

variance is decreased by averaging
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e.g., patient 5
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New test instance

…



Class B

Class A Class A

Classification: New test instance

…

Majority Vote -> Class A



10

20 30

Regression: New test instance

…

Avg = 20



Random Forests



Random Forests

• In bootstrapping, the samples taken are independent.
• But the predictions from trees grown on the bootstrapped samples 

are not independent!
• They share the same features and can therefore create similarly 

overfitting decision rules
• “Wisdom of crowds who peek at each other’s answers”
• This phenomenon is called “tree correlation” (Breiman 2001)



Random Forests

• Random forests try to remove the tree correlation by feature 
sampling: randomly sampling both rows (bootstrapping) and columns



Random forest: feature sampling

• Decorrelation obtained by:
• When building a tree, instead of using all variables when making a split, take a 

random selection of m predictors as candidates to base the split on
• At each split, take a fresh selection of m predictors

• m is typically set to
• Similar to bagging, the collection of trees (= forest) is built on 

bootstrapped training samples
• Hence, bagging is a special case of a random forest with m = p.
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(X1, y1)

(X2, y2)

(X5,y5)

(X4,y4)

(X5,y5)

Bootstrap sample 1

p3

p1 p2 p3 p4 y

1. Take one bootstrapped sample
2. Build a decision tree: 
- To find the best predictor, consider 
randomly 2 predictors to choose from

e.g., To find the root of the tree consider 
only p2, p3



(X1, y1)

(X2, y2)

(X5,y5)

(X4,y4)

(X5,y5)

Bootstrap sample 1

p3

p1 p2 p3 p4 y

p4

1. Take one bootstrapped sample
2. Build a decision tree: 
- To find the best predictor, consider 
randomly 2 predictors to choose from

e.g., To find the predictor for the next split, 
consider only p1, p4



“Out-of-bag” error estimation

• When we do bagging and random forest, there is a very simple way to 
estimate the test error:
• In both methods, we take multiple bootstrapped samples of the training data. 

On average, each tree uses about 2/3 of the observations
• The remaining 1/3 of observations left out are referred to as the out-of-

bag(OOB) observations
• If we want to calculate the error for a particular observation, we can 

predict the response using each of the trees in which it was OOB. This 
will give B/3 predictions for this observation, which we average. 
When we do this for all observations, we get the OOB error.
• Very close to leave-one-out cross-validation
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(X1, y1)

(X2, y2)

(X5,y5)

(X4,y4)

(X5,y5)

out of bag sample

Class A

out of bag sample

Class A

…

out of bag sample

Correclty classified as class A



“Out-of-bag” error
out of bag sample 1 Correclty classified as class A

out of bag sample 5 Uncorreclty classified as class A

…

- We can measure how accurate our random forest is by the 
proportion of out-of-the-bag samples that were correclty classified
- The proportion that was incorreclty classified is the Out-Of-Bag 
error



bagging vs random forest

- The dashed line indicates the test error resulting 
from a single classification tree. 
- The test error (black and orange) is shown as a 
function of B, the number of bootstrapped training 
sets used.
- The green and blue traces show the OOB error, 
which in this case is — by chance — considerably 
lower.



Variable importance measure

• In both bagging and random forest, it can be difficult to interpret the 
resulting model:
• When we build a large number of trees, it is no longer possible to (graphically) 

represent the resulting statistical learning procedure using a single tree
• How to find out which predictor(s) are most important in predicting a correct 

outcome?

• Variable importance measures
• Larger value indicates a more important predictor



Impurity-based feature importance (MDI)

• How “important” is variable xj to the prediction?
• Recall that trees (classification or regression) are grown by minimizing 

“impurity” (e.g. Gini)
• IDEA: Record the total amount that impurity is decreased due to splits 

over xj, averaged over all B trees (MDI)
• Advantage:
• Obtained for free with estimation

• Disadvantages:
• importance of features used to overfit inflated
• importance of numerical features inflated



Permutation-based feature importance

• IDEA: randomly shuffle one column, and observe how much worse it 
makes the model
• Advantage: Doesn’t have the problems of MDI
• Disadvantages:
• Can take a while, results vary
• Ignores correlations among predictors (e.g. perfectly correlated 

features are all “unimportant” )





Quiz time!



Summary

• Decision trees are simple and useful for interpretation
• However, prone to overfitting. Solutions: pruning, bagging and 

random forests
• Bagging: fit multiple trees to bootstrapped samples of the data, 

combine to yield a single consensus prediction
• Random Forest: fit trees to bootstrapped samples from the data AND 

sample predictors. Combine all trees to yield a consensus prediction



Summary

• When using bagging and random forests we can approximate the test 
error using the Out of Bag (OOB) estimate of the error
• Which predictor is most influential on the outcome can be inferred 

from variable importance measures
• Random forests often show top-tier performance out of the box, but 

the resulting model is difficult to interpret



Practical on Thursday.
Preparation: make sure to have finished the homework section

Next week: Introduction to text mining (ONLINE)

Link for the MS teams on BB; join before Sunday J

Have a nice day!


