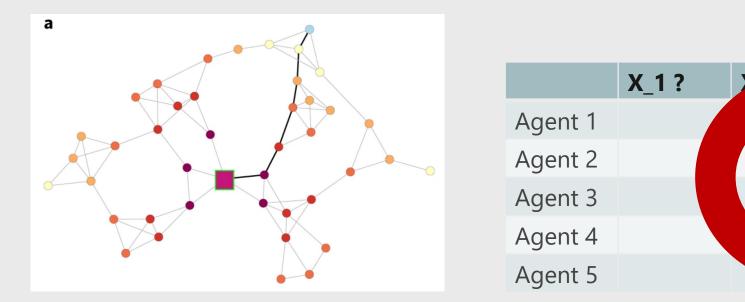
Network Science

Javier Garcia-Bernardo Utrecht University

Tabular data

	X_1	X_2	•••	X_N
Observation 1				
Observation 2				
Observation 3				
Observation 4				
Observation 5				

Text data


	word_1	word_2	•••	word_N
Text 1				
Text 2				
Text 3				
Text 4				
Text 5				

Relational/transactional data

Our life is completely defined by networks: relationships, interactions, communications. Biological networks governing the interactions between genes in our cells determine our development, neural networks in our brain make us think, information networks guide our knowledge and culture, transportation networks allow us to move, and social networks sustain our life.

A First Course in Network Science, F Menczer, S Fortunato, C.A. Davis

Today: Relational data (networks)

If we were to study them using tabular data, how do we include connections?

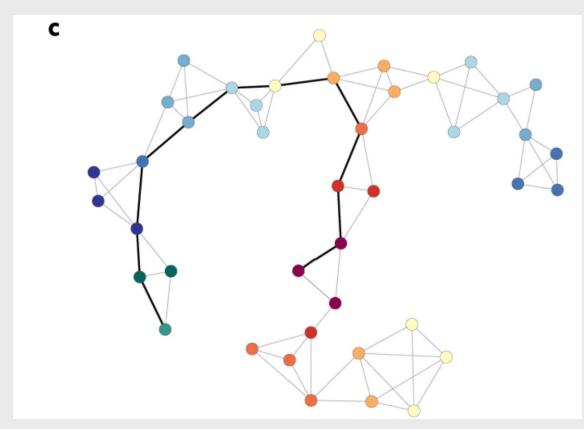
X N ?

Why do we care about the connections?

They reflect underlying patterns (e.g. differences in power/hierarchies/roles). They constrain/facilitate future change.

Sometimes they are responsible of "emergent" phenomena that cannot be explain from looking at the actors.

1) They reflect underlying patterns (e.g. differences in power/hierarchies/roles).


RQ:

Which country has the most bargaining power?

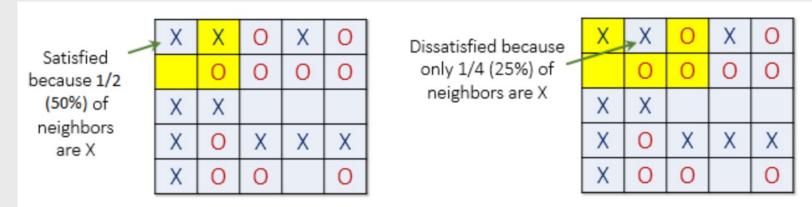
Who is the most politically influential company?

What type of roles do employees of a company play (coordination/innovation/etc)? What is the political ideology of media outlets?

2) They constrain/facilitate future change.

Block, P., Hoffman, M., Raabe, I. J., Dowd, J. B., Rahal, C., Kashyap, R., & Mills, M. C. (2020). Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world. Nature human behaviour, 4(6), 588-596.

Which person would you vaccinate first? app.wooclap.com/ADAV2024


3) Emergence. e.g. Schelling model

Why do we see residential segregation?

Every actor lives in a house and is connected to its neighbors in a network. Every actor is the same:

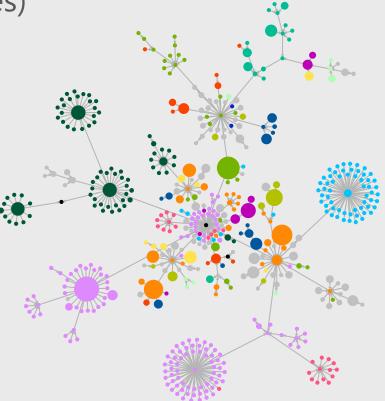
- They want to have 1/3 of their neighbors to be like them
- Otherwise, they move to a random house

Let's play!

http://nifty.stanford.edu/2014/mccown-schelling-model-segregation/

Two key concepts of today

• **Centrality:** Who are the key actors in the network?


• **Community structure:** What clusters of people are in the network?

Introduction to networks

What is a network?

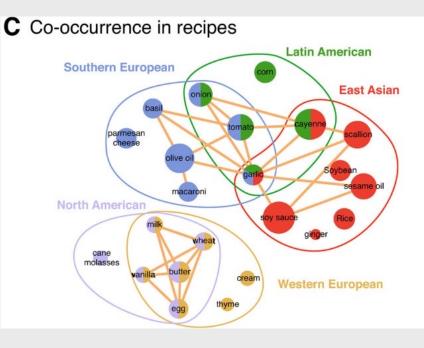
Mathematical representation of the relationships (edges) between entities (nodes)

The most important question to ask yourself is **What are the nodes and what are the edges?**

Types of networks

	Network	Nodes	Edges		
	Friendship	People	Friendships		
Behavioral	Instagram	Online accounts	Followers/likes		
	Psychological	Symptoms	Co-ocurrence		
Biology	Gene regularory	Genes	Activations/inhibations		
ыыыду	Food web	Animals	Predation		
Foonamia	Trade	Countries/companies	Money flows		
Economic	Ownership	Companies	Ownership stakes		
	Internet	Computers (IPs)	Data transmission		
Intrastructure	Power grid	Power stations	Power lines		
	Airplane network	Airports	Flights		

Adapted from: https://aaronclauset.github.io/courses/5352/csci5352_F21_L1.pdf


Type of networks and characteristics

Type 1: Interaction and flow → "Real networks".

- Offline interactions
- Online interactions

Type 2: Affiliation → Node 1 is part of/related to node 2

- e.g., students in classrooms
- e.g., ingredients in recipes

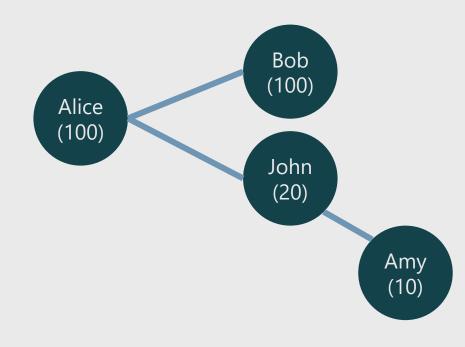
Type 3: Co-occurrence → Node 1 is correlated with node 2

- e.g., stock market networks (the fluctuations in two stocks correlate)
- e.g., brain networks (the brain signals in two areas correlate)

Today we focus on the first type ("real networks")

Why do we care about networks?

Network structure and network dynamics reflect important information

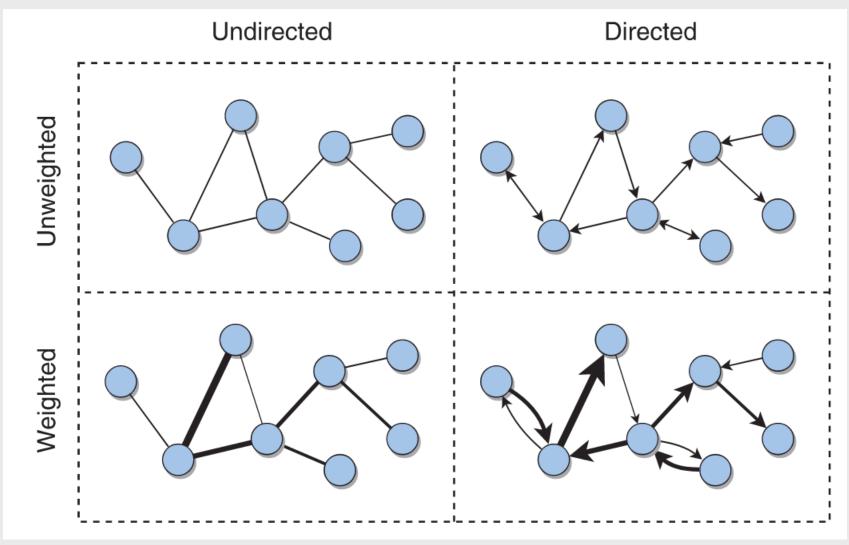

Epidemiology: How to stop disease transmission in a social network?
Criminology: How to detect criminal actors in a network of money flows?
Biotechnology: Which genes to target to stop cancer in a gene regulatory network?
Ecology: Which animals we need to preserve to avoid ecosystem collapse?
Psychology: In a belief network, how does attitude change depend on the correlation between other attitudes?
Engineering: How to improve network performance and reliability in power grids?
Economics: How does country development depend on the type of products a country export?
Social science: How does social capital affect upward mobility?
Physics view: Dependence on topology (reliability, dynamics, emergent behavior and phase transitions)

What other research questions could you answer using networks?

app.wooclap.com/ADAV2024

Basic definitions

Networks (graphs)


Nodes (vertices, actors) connected by **edges** (links, connections, relationships)

N: **Nodes** = {Alice, Bob, John, Amy} E: **Edges** = {(Alice, Bob), (Alice, John), (John, Amy)}

The edge (i,j) connects node i to node j

Nodes can have **attributes** (e.g. gender, income, etc) **Edges** can have **attributes** (e.g. type, strength, etc)

Directed vs undirected; weighted vs unweighted

Undirected: The link (i,j) connects node i to node j in both directions

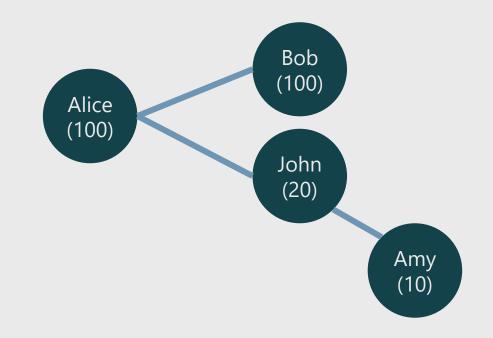
Directed: The link (i,j) connects node i (source) to node j (target)

Weighted: There is a weight associated to each edge

Source: A first course in network science (2020)

Degree in undirected networks

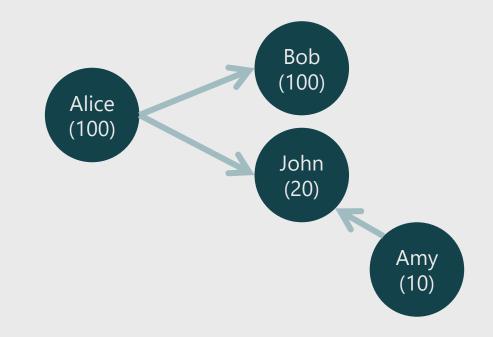
Definition: Number of neighbors in the network


Node: degree

Alice: 2

Bob: 1

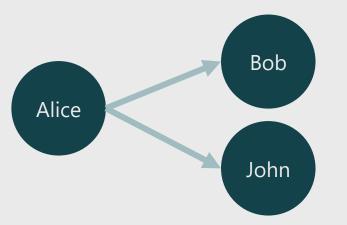
John: 2


Amy: 1

Degree in directed networks

Out-degree: Number of outgoing edges In-degree: Number of incoming edges Total degree: Sum of out and in degree

Node: (out, in, total) Alice: (2, 0, 2) Bob: (0,1, 1) John: (0,2, 2) Amy: (1,0, 1)



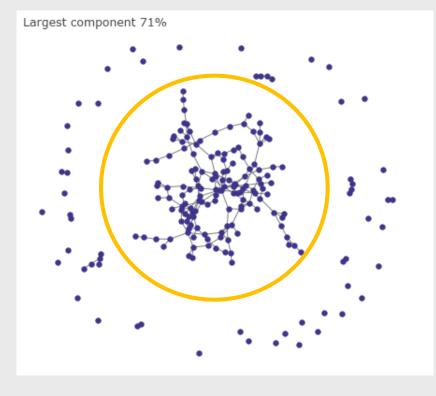
Network representation

Adjacency list (edgelist):

- Adv: It is dense: Only keeping edges
- Disadvantage: Hard to work with

Origin	Target	Weigth
Alice	Bob	1
Alice	John	1

Adjacency matrix:


- Adv: Math is easy (matrix multiplication)
- Disadvantage: It is sparse (mostly zeros). 1 million nodes → 1 trillion numbers

Target → ↓ Source	Alice	Bob	John
Alice	0	1	1
Bob	0	0	0
John	0	0	0

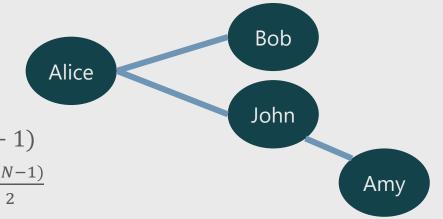
In computer \rightarrow Sparse matrices: Best of both worlds

Network metrics and characteristics

Connectedness

Real networks are typically connected, forming a **"giant** component"

- If the average degree < 1 \rightarrow many small components
- If the average degree > 1 \rightarrow suddenly the system becomes connected

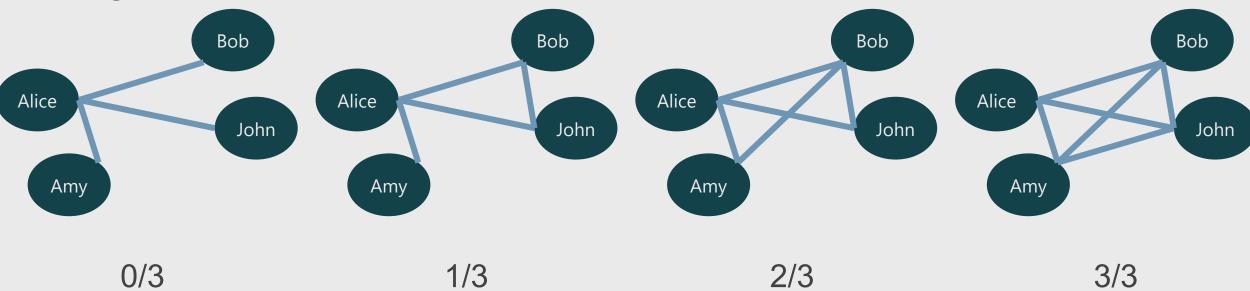

Density

Definition: Number of edges present / potential number of edges

- Number of edges = 3
- Potential number of edges in directed network = $(4*3) = N \cdot (N-1)$
- Potential number of edges in undirected network = $(4^*3)/2 = \frac{N(N-1)}{2}$

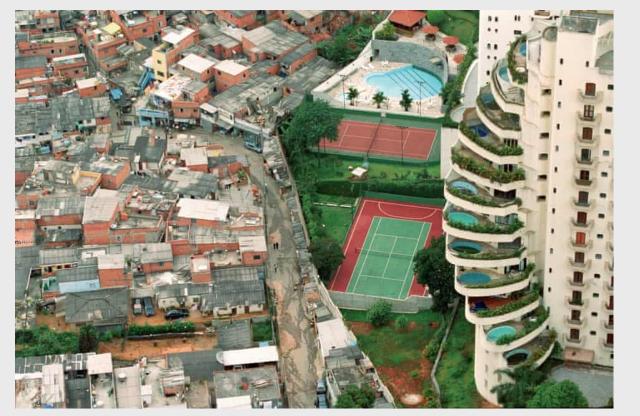
Density = 3/6 = 50%

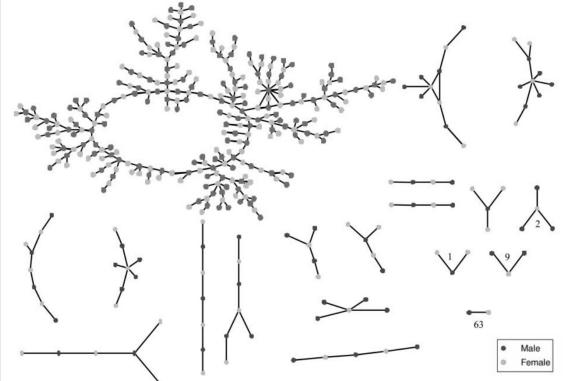
Real networks are typically **sparse** (out of the 8B people on earth, you have very few friends)



Clustering coefficient (~transitivity)

Strogatz, Watts (1998): The share of your neighbors who are connected to each other


Real networks have **high clustering**



Assortativity (homophily)

Preference for nodes to attach to others that are similar in some way Defined with respect of an attribute (e.g. gender) Ranges from -1 (fully disassortative) to 1 (fully assortative)

Paraisópolis favela and Morumbi, in São Paulo Photography by Tuca Vieira (the guardian) Romantic links between teenagers Bearman, Moody, Stovel (1991)

Small world: six degrees of separation

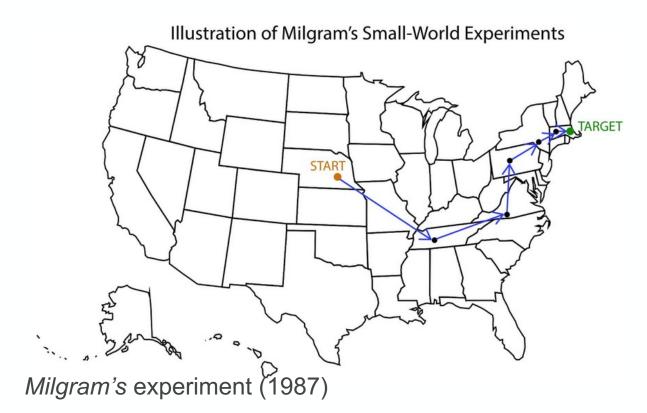
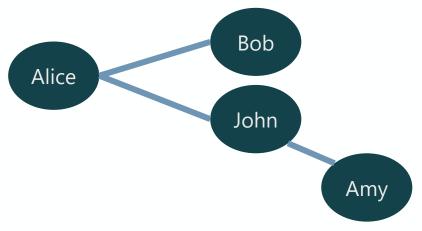
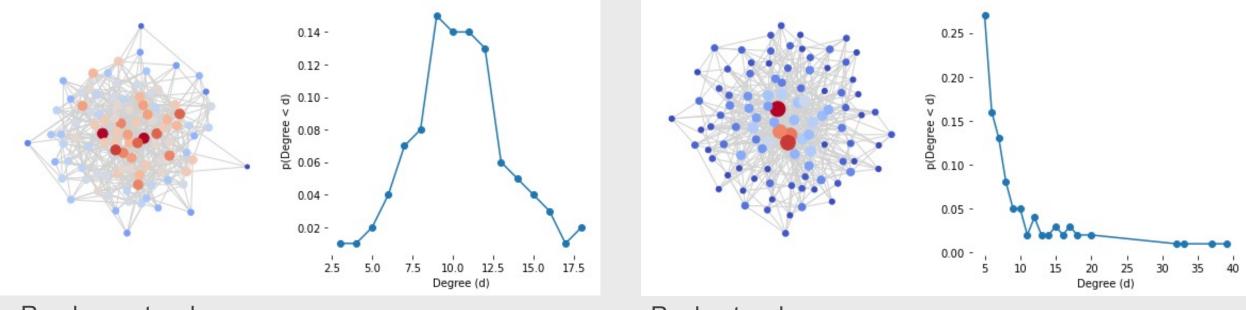


Image source: Baek et al, 2021


Shortest path between node 1 and node 2:

- Minimum number of steps requires to go from node 1 to node 2
- Between Alice, Amy \rightarrow 2


Diameter:

- Longest "shortest path" between two nodes
- In our network: 2 (Alice -> John -> Amy)

Real networks have **small diameters** because hubs connect diverse parts of the network

Skewed degree distributions

Random network

Real network

Network repository: networks.sweked.de

terrorists_911 — 9-11 terrorist network

Description

Network of individuals and their known social associations, centered around the hijackers that carried out the September 11th, 2001 terrorist attacks. Associations extracted after-the-fact from public data. Metadata labels say which plane a person was on, if any, on 9/11.¹

1. Description obtained from the ICON project. \leftarrow

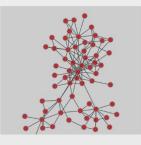
Tags

Social Offline Unweighted Metadata

Citation

V. Krebs, "Mapping networks of terrorist cells." Connections 24, 43-52 (2002)., https://doi.org/10.5210/fm.v7i4.941 [@sci-hub]

Upstream URL OK


https://aaronclauset.github.io/datacode.htm

Networks

Tip: hover your mouse over a table header to obtain a legend.

Name	Nodes	Edges	$\langle k angle$	σ_k	λ_h	au	r	с	\oslash	S	Kind	Mode	NPs
terrorists_911	62	152	4.90	4.00	7.25	19.05	-0.08	0.36	5	1.00	Undirected	Unipartite	id name group

Ridiculograms

Problems with this dataset? Open

an issue. You may also take a look at the source code.

The network in this dataset can be loaded directly from graphtool with:

import graph_tool.all a
g = gt.collection.ns["t

swingers — Swingers and parties (2013)

Description

A bipartite sexual affiliation network representing "swing unit" couples (one node per couple) and the parties they attended.¹

1. Description obtained from the ICON project. ↔

Tags

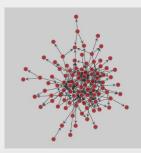
Social Offline Unweighted

Citation

A.-M. Niekampab et al., "A sexual affiliation network of swingers, heterosexuals practicing risk

behaviours that potentiate the spread of sexually transmitted infections: A two-mode approach." Social Networks 35(2), 223-236 (2013), https://doi.org/10.1016/j.socnet.2013.02.006 [@sci-hub]

Upstream URL 404


https://sites.google.com/site/ucinetsoftware/datasets/covert-networks/swingers

Networks

Tip: hover your mouse over a table header to obtain a legend

Name	Nodes	Edges	$\langle k angle$	σ_k	λ_h	au	r	с	\oslash	S	Kind	Mode	NPs	EPs	
swingers	96	232	2.42	5.19	7.46	5.19	-0.34	0.00	7	1.00	Directed	Bipartite	name		2

Ridiculograms

Problems with this dataset? Open an issue. You may also take a look at the source code.

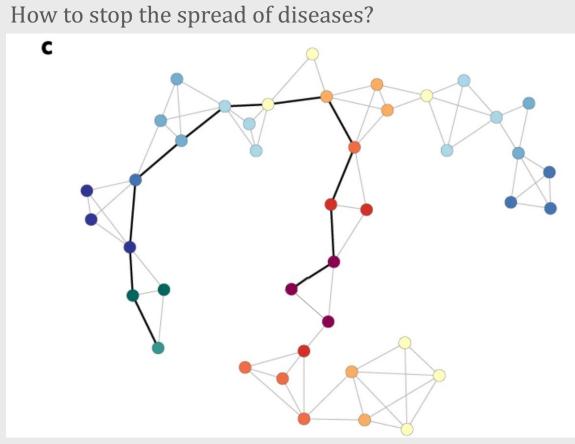
The network in this dataset can be loaded directly from graphtool with:

import graph_tool.all a
g = gt.collection.ns["s

Recap

There is important information encoded in relationships Modeling systems using networks allow us to study that information We can represent networks using adjacencies matrixes or adjacencies lists

We can describe networks using:


- Number of nodes and edges
- Density
- Assortativity
- Clustering coefficient / Transitivity
- Diameter

http://javier.science/panel_network/

15 minutes break

Motivating examples

Important nodes: bridges

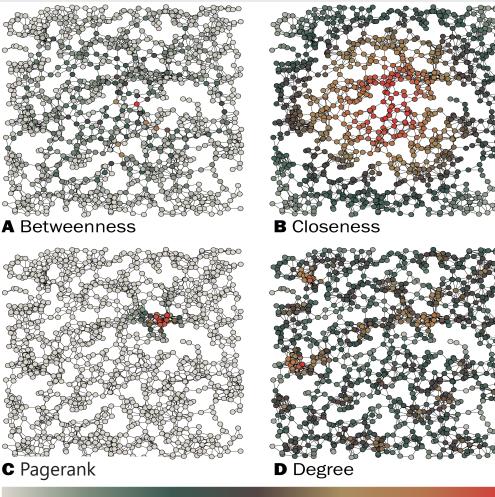
How to sort Google results?

PageRank counts the **quality** and **quantity** of backlinks to assess the importance of a page.

https://www.leannewong.co/google-pagerank/

Important nodes: those linked by important nodes

Centrality

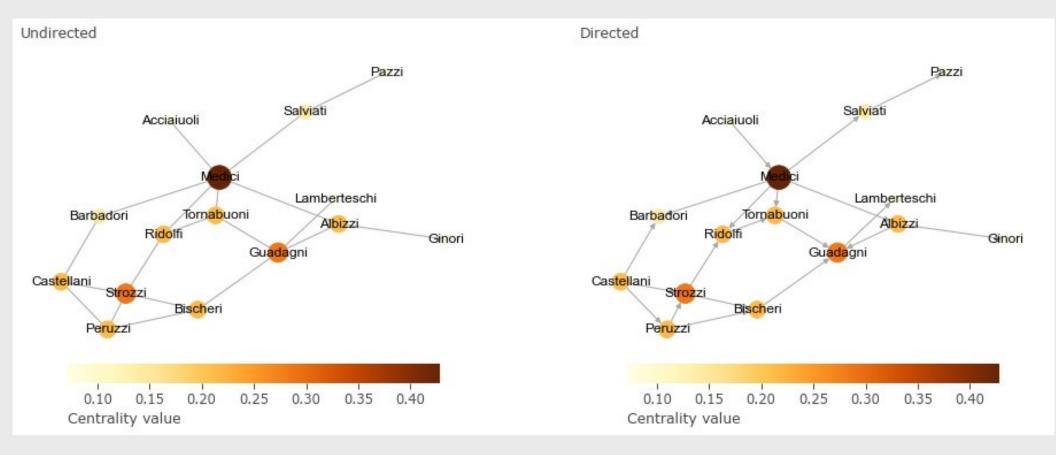

Who are the key actors in the network?

Centrality measures allow to answer this question.

Different centrality measures define importance in different ways :

- Degree: Connected to many nodes
- Closeness: Close to all other nodes
- *Betweenness*: In the middle of shortest paths
- *Pagerank*: Connected to important nodes

Centrality identify *the most important nodes*. It does not quantify the importance of nodes in general. The relative rankings of non-important nodes may be meaningless.

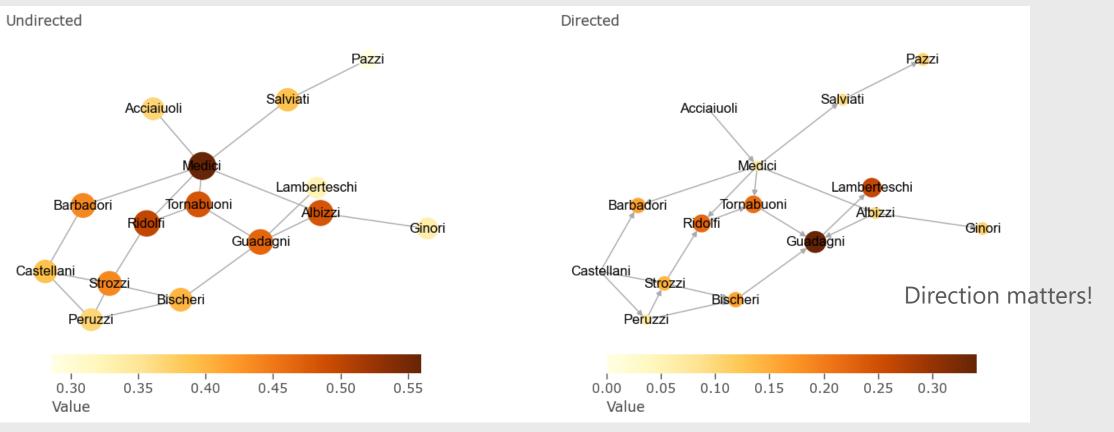

Least central

Degree centrality = $d_i/N-1$

 d_i = degree of node i

N - 1 = number of nodes - 1 (max. potential number of partners without self-edges)

Measures the **local** influence of the node

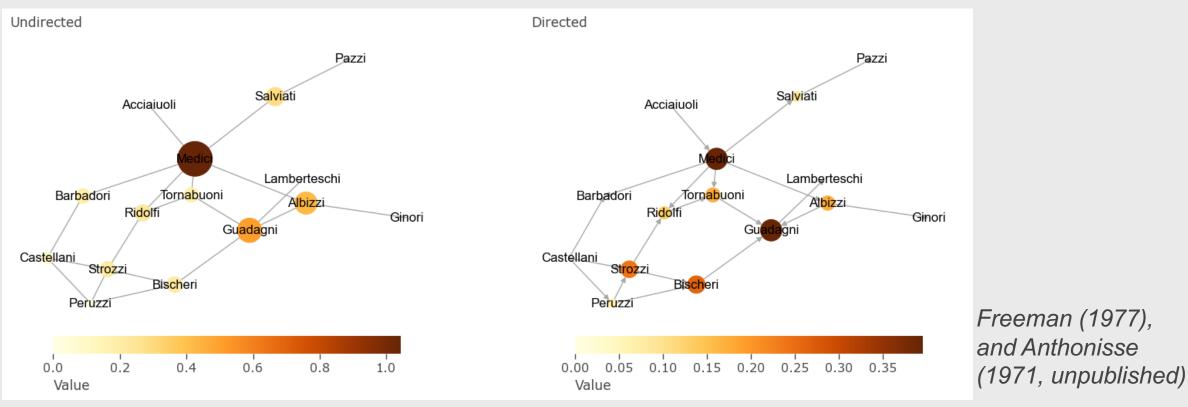

Closeness centrality = $1/l_i$

 I_i = average distance of node *i* to all other nodes := $I_i = \frac{1}{N-1} \sum_j d_{ij}$

*d*_{*ij*} = shortest distance from node *i* to node *j*

Only useful in fully connected networks

Measures the most central node in the network (closest from all other nodes)

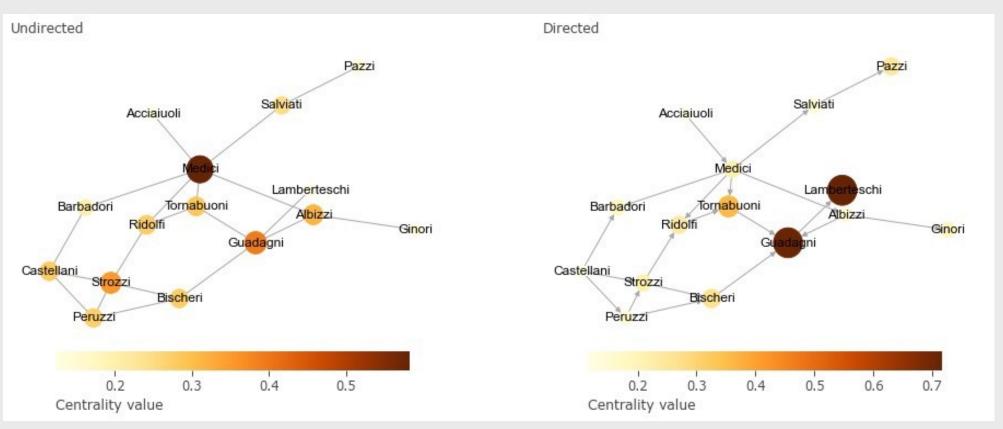


Betweeness centrality = $1/n^2 \sum_{st} n_{st}^i$

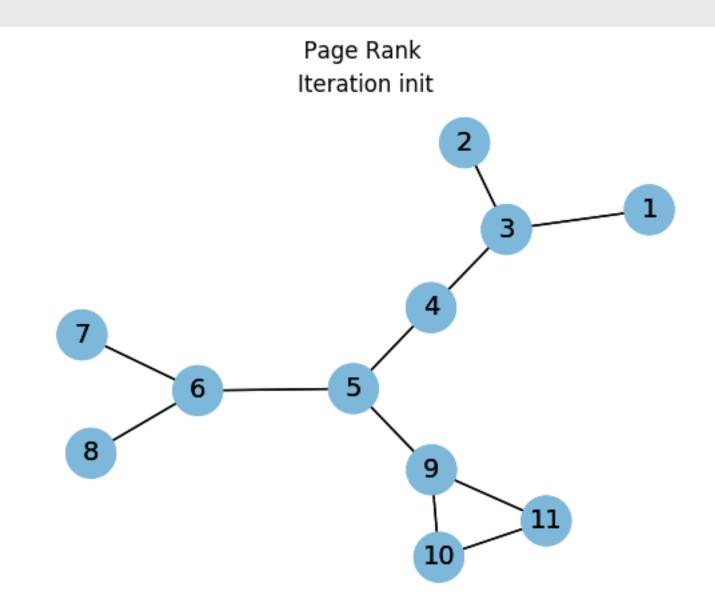
 $n_{st}^i = 1/g$ if node *i* lies on the *g* shortest paths between nodes *s* and *t* Assumptions:

- every pair of nodes in the network exchanges messages at the same average rate
- messages always take the shortest available path though the network

Measures **brokerage** in the network → disruption of these nodes = disruption of communication



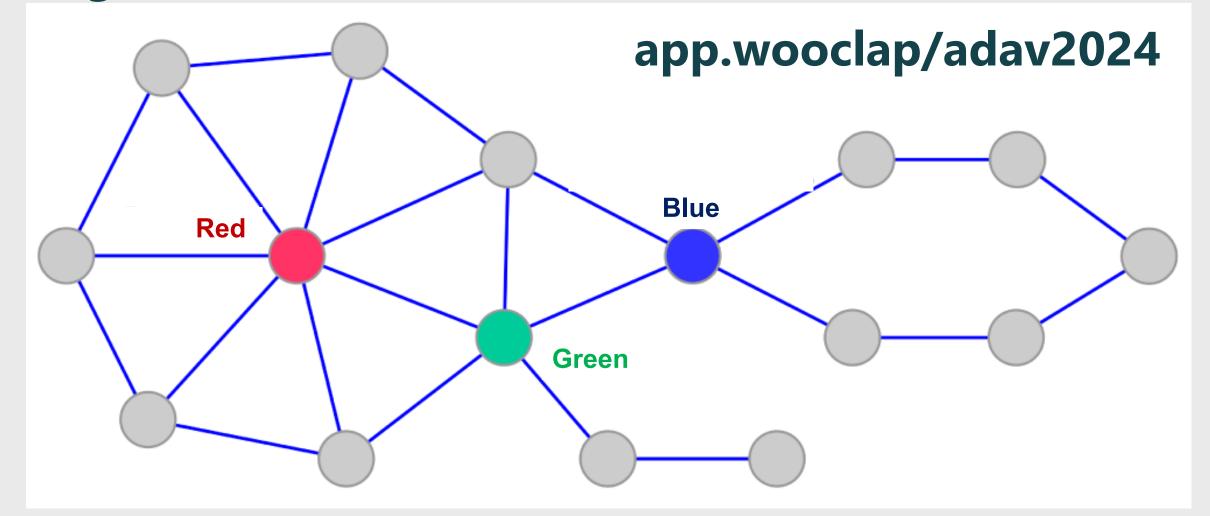
Pagerank centrality = $(1 - \alpha) \sum_{j} A_{ij} {}^{p_j} / {}_{d_i} + \alpha$


 d_j = Degree of node *j*. p_j = Pagerank centrality of node *j*

Takes into account how central your neighbors are. Each node has a minimum value of α . The pagerank of a node is α plus **the pagerank of your neighbors** (normalized by their out-degree)

Measures total **influence** in the network (assuming all nodes are the same)

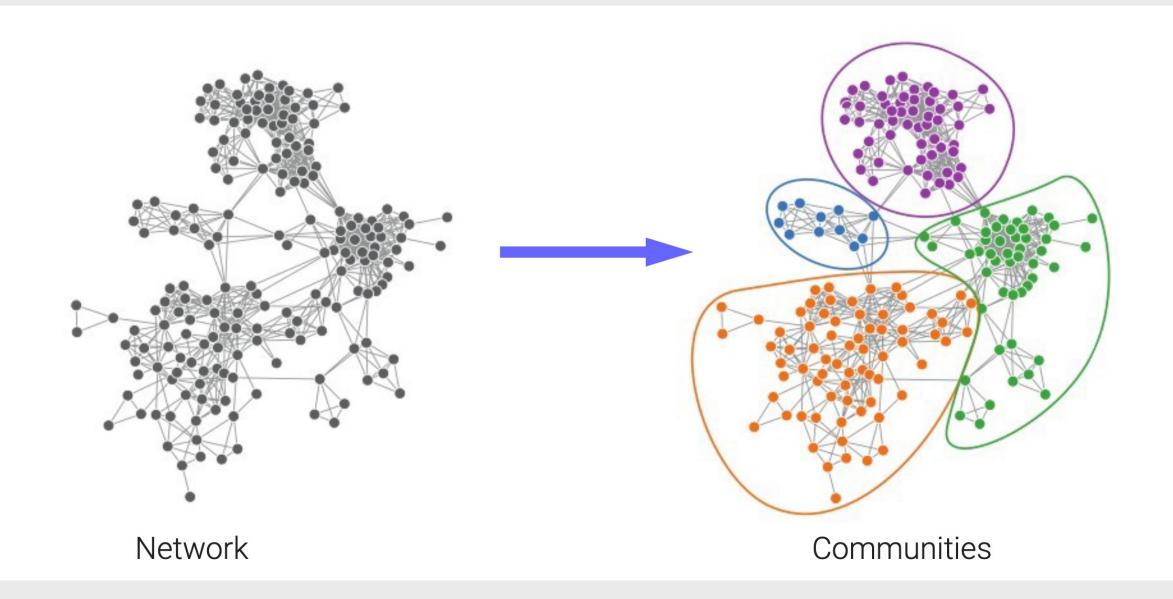
Bonacich, 1987


Use a centrality measure that fits your question, not the one that gives you the best results

Consider what is the real objective (e.g. is it to stop a disease or protect specific groups?) (https://petterhol.me/2019/01/11/the-importance-of-being-earnest-about-node-importance/)

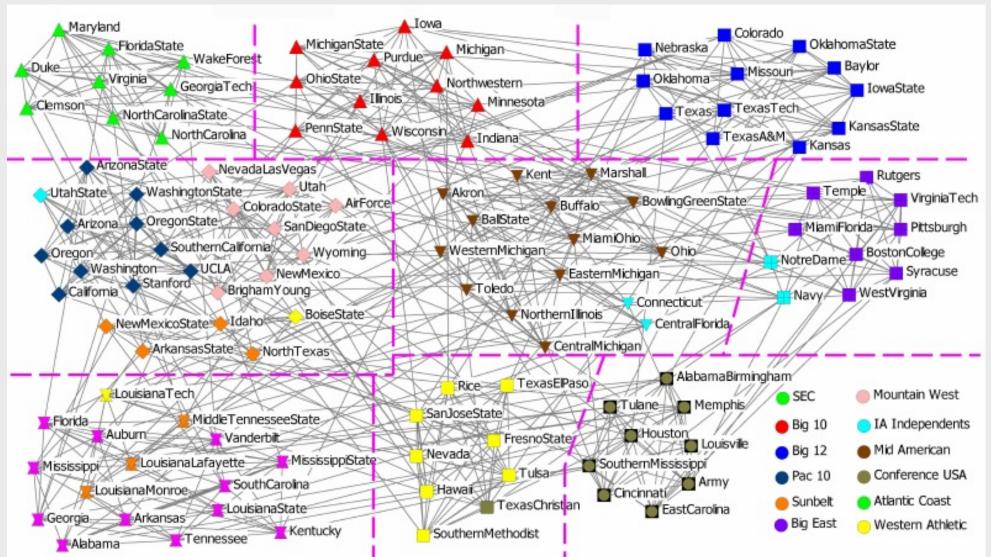
1 IA 18 VIIIA										18 VIIIA								
1	8000 1979 DC	Periodic Table of Network Centrality									518 1989 IC							
	Degree	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	Information C
2	224 1971 BC	239 2008 EBC Endpoint BC											26 1909 kPC	275 2002 EGO Ego	51 2004 HYPER Hypergraphs	279 1997 AFF Affiliation C.	399 2 001 α-C	178 1995 ECC Eccentricity
3	942 1966 CC Coseness	239 2008 PBC Proxy BC	3 IIIA	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	9068 1999 HITS Hubs/Authority	573 2006 g-kPC geodesic kPath	296 1999 GROUP Groups/Classes	80 2006 HYPSC Hyperg, SC	34 2010 t-SC t-Subgraph	116 1998 RAD Radiality
4	1279 1972 EC	239 2008 LSBC	224 1971 EBC	53 2009 CBC	236 2007 ΔC	s 2010 MDC	0 2015 EYC	2 2013 CAC	56 2007 EPTC	281 1971 CCoef	42 2012 PeC	427 2007 BN	43 2009 EI	573 2006 e-kPC	573 2006 v-kPC	505 2010 WEIGHT	17 2013 TCom	116 1998 INT
5	Eigenvector 1306 1953 KS	LscaledBC 239 2008 DBBC	Edge BC 979 2005 RWBC RWalk BC	Commun. BC 477 1991 TEC Total Effects	Delta Cent. 42 2009 LI Lobby Index	MD Cent. 11 2008 MC	0 2014 COMCC Community C		Entropy PC 0 2015 SMD Super Mediat.	Clust. Coef. 1 2014 UCC United Comp.	PeC 4 2012 WDC WDC	Bottleneck 119 2008 MNC MNC	Essentiality I. 43 2009 KL Clique Level	e-disjoint kPC 179 2005 BIP Bipartivity	v-disjoint kPC 426 1988 GPI GPI Power	Weighted C. 116 1991 kRPC Reachability	Total Comm. 58 2007 SCodd odd Subgraph	586 2004 RWCC
6	Katz Status 8053 1999 PR Page Rank	DBounded BC 239 2008 DSBC DScaled BC	291 1953 <i>σ</i> Stress	477 1991 IEC	1 2014 DM Degree Mass	Mod Cent. 10 2012 LAPC Laplacian C.	0 2012 ABC Attentive BC	ECCoef 1699 2001 STRC Straightness C	0 2025 SNR Silent Node R.	15 2011 HPC Harm. Prot.	26 2011 LAC Local Average	119 2008 DMNC	3 2013 LR Lurker Rank	2457 1987 β-C β Cent.	X X HYP Hyperbolic C	27 2012 kEPC k-edge PC	13 2007 FC Functional C.	RWalk CC 0 2014 HCC Hierar, CC
7	484 2005 SC	613 1991 FBC	14 2012 RLBC	477 1991 MEC	69 2010 LEVC	35 2010 TC	x x SDC	15 2010 ZC	14 2013 CI	11 2013 CoEWC	45 2012 NC	108 2010 MLC	x x RSC	1 2014 SWIPD	36 2009 XXXX	0 2014 BCPR	0 2014 TPC	0 2015 EDCC
1	Subgraph	Flow BC	RLimited BC	Mediative Eff.	Leverage Cent.	Topological C.	Sphere Degree	Zonal Cent.	Collab. Index	CoEWC	NC	Moduland C.	Resolvent SC	SWIPD	LinComb	BCPR	Tunable PC	Effective Dist.
	citations year C Name					8000 1979 Freeman Conceptual	942 1966 Sabidussi Axiomatic	573 2006 Borgatti/Everett Conceptual	1130 2005 Borgatti Conceptual	24 2014 Boldi/Vigna Axiomatic	252 1974 Niominen Axiomatic	6 1981 Kishi Axiomatic	3 2012 Kitti Axiomatic	3 2009 Garg Axiomatic		Betw Fried Misce	ditional" eenness kin Mea ellaneou	sures
C	2065 1934 1546 1950 780 1948 1475 1951 297 1992 3649 2001 4167 1993 71 2008 Specific Network Moreno Bavelas Bavelas Leavitt Borgatti/Everett Jeong et al. Tsai/Ghoshal Ibarra Valente Spectral-based CDavid Schoch (University of Konstanz) Historic Historic Historic Conceptual Empirical Empirical <t< td=""><td>ed</td></t<>									ed								

javier.science/panel_network


Which node has higher degree/betweenness/closeness?

https://cytoscape.org/cytoscape-tutorials/presentations/modules/network-analysis/index.html

Community detection


Adapted from the materials of Leto Peel, Network Science Summer School, https://net-science.github.io/

Community detection

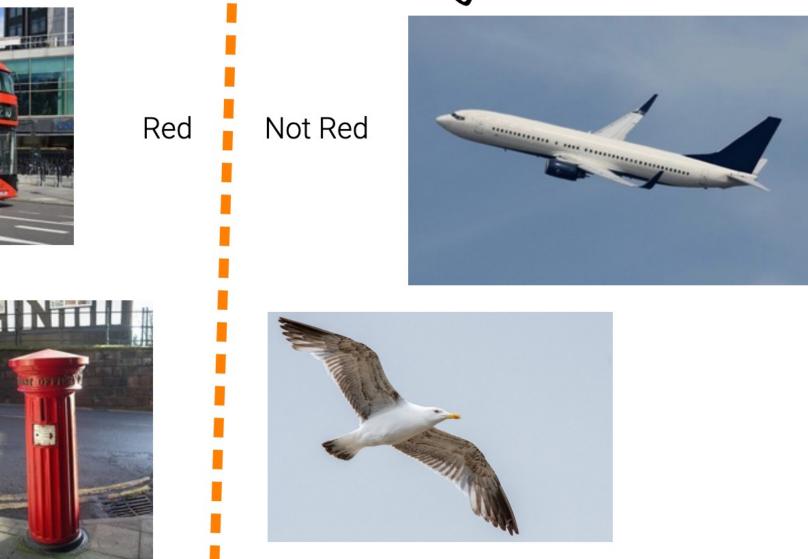
- It's a type of unsupervised learning: We have the inputs (info on the nodes/edges), not the output (the community label)
- We want to learn the outputs with a model that uses some assumptions
- Typical assumption: nodes in the same community have the same type of connectivity pattern
 - E.g. many links within communities and few links across communities

Often we use node attributes to see if the method is working

Lou, X., & Suykens, J. A. (2011). Finding communities in weighted networks through synchronization. Chaos: An Interdisciplinary Journal of Nonlinear Science, 21(4).

But there can be multiple good ways to partition a dataset (e.g. a network)!

"Cluster" these objects



"Cluster" these objects

"Cluster" these objects

Cannot Fly Can Fly

"Cluster" these objects

Transport

Not Transport

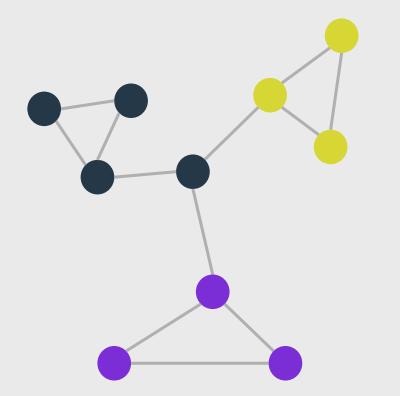
"Cluster" these objects

Not Alive

Alive

There may be many good ways to partition a network, some unrelated to the node attributes you have!

Many methods

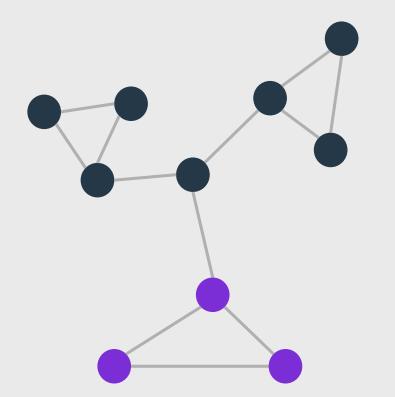

Often: many links within communities and few links across communities

Main example: Create communities to maximize modularity (Q)

$$Q = \sum_{c} (e_{cc} - a_c^2)$$
raction of links
nside community c
$$Expected \text{ fraction of links within a community in a random network}$$

$$a_c = \sum k_i / 2m$$

 $i \in c$


Fraction of links inside community c

Expected fraction of links within a community in a random network

$$a_c = \sum_{i \in c} k_i / 2m$$

	E _{cc}	a _c	$E_{cc} - a_c^2$
c=Black	4/12	10/24	0.160
c=Yellow	3/12	7/24	0.165
c=Purple	3/12	7/24	0.165
Modularity			0.490

By Sohini6685 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17042821

Fraction of links inside community c

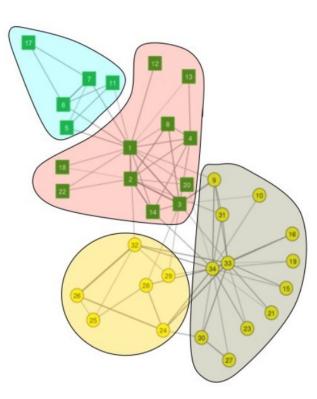
Expected fraction of links within a community in a random network

$$a_c = \sum_{i \in c} k_i / 2m$$

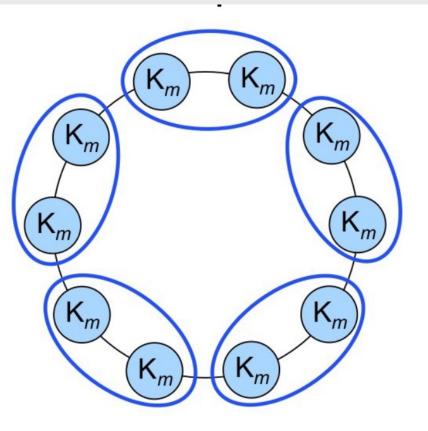
	E _{cc}	a _c	$E_{cc} - a_c^2$
Black	8/12	17/24	0.165
Purple	3/12	7/24	0.165
Modularity			0.310

By Sohini6685 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17042821

javier.science/panel_network


Algorithms for modularity maximization (and related methods)

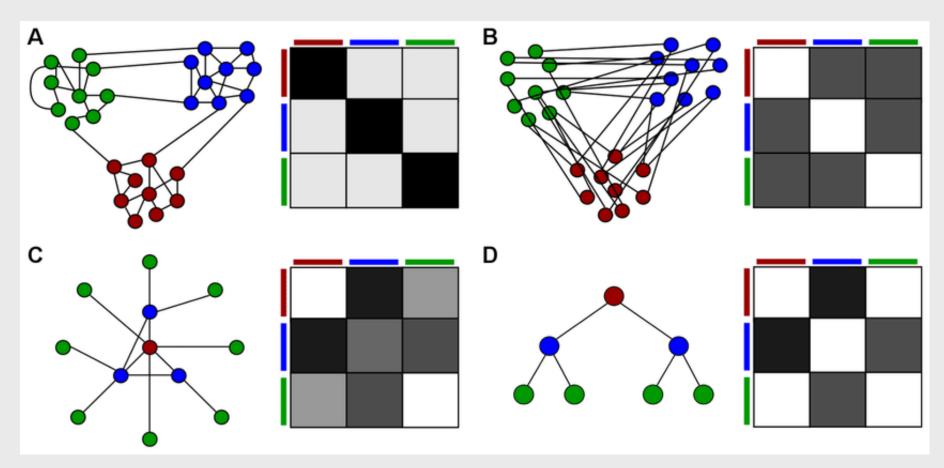
- Louvain and Leiden algorithms
- Spinglass algorithm (allows to penalize existing and non-existing links differently)

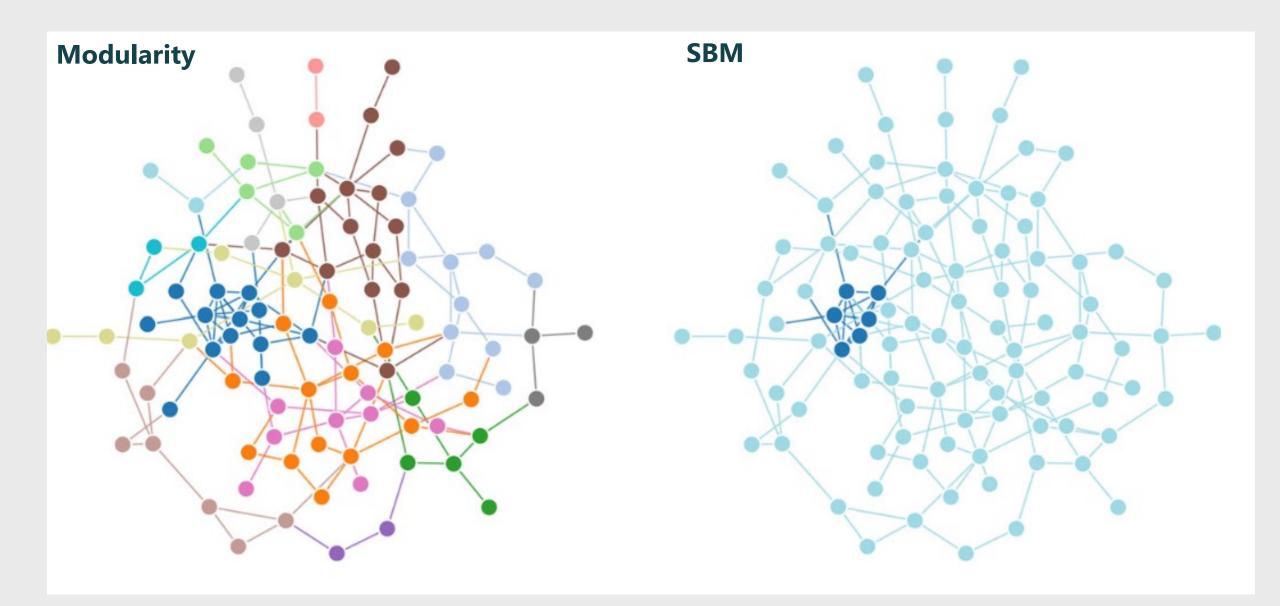

Other algorithms

- Walktrap: Drop many "random walkers" in the network and see how often they visits pairs of nodes in the same walk.
- Label propagation:
 - Each node is initialized with a unique label. Iteratively, each node adopts the label that most of its neighbors currently have.
 - We can add information on some pre-labelled nodes
- Statistical inference: the Stochastic Block Model

Problems with modularity

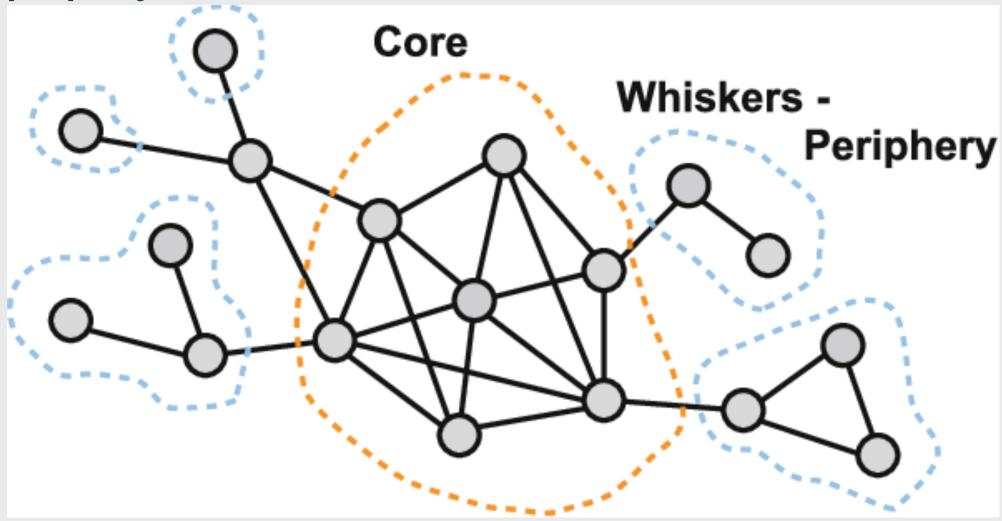
Finds spurious communities (overfitting)


Resolution limit (underfitting)


Stochastic Block Model (SBM)

Defines communities as *unique connectivity patterns*, represented in a block matrix.

Can find other connectivity patterns apart from the ones defined by modularity maximization ("many connections within communities, few between communities")


But very complex!

Peel, L., Peixoto, T. P., & De Domenico, M. (2022). Statistical inference links data and theory in network science. *Nature Communications*, 13(1), 6794.

What communities would modularity maximization find in a coreperiphery network? What about SBM?

(Leskovec et al. 2008)

Want to learn more about networks?

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Network Science

2024 Utrecht University Summer School

Practical information

- **Dates**: July 15th July 19nd, 2024
- Location: Utrecht University, Science Park
- Instructors: Javier Garcia-Bernardo, Leto Peel, Mahdi Shafiee Kamalabad, Elena Candellone, Jiamin Ou, Vincent Buskens
- Preparation: Install R, RStudio and Anacondas

Github repository

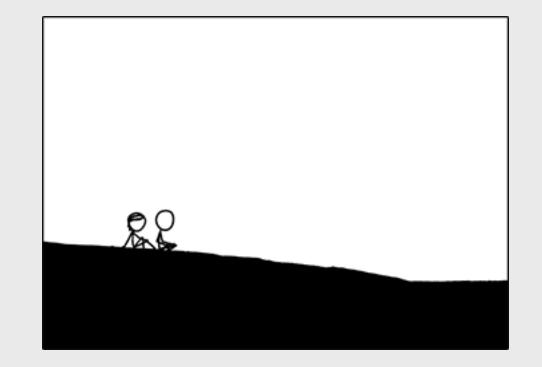
All slides, code and data can be found here. The lectures and code can also be explored using the links below.

Recap of today

There is important information encoded in relationships Modeling systems using networks allow us to study that information We can represent networks using adjacencies matrixes or adjacencies lists

We can **describe networks**: number of edges and nodes, density, assortativity, transitivity, diameter

We can find the most important nodes using **centrality measures**


- Different measures define "importance" in different ways: degree, closeness, Pagerank and betweenness

We can find clusters of nodes using **community detection algorithms**

- Modularity maximization: Detect communities with many edges within communities, few edges between
- SBM: Detect communities with unique connectivity patterns

Recap of ADAV

- Data visualization:
 - Design principles
 - Interactive / RShiny
- Building blocks of statistical learning:
 - Bias vs variance trade-off, underfitting vs overfitting
 - Training/test split
- Types of models:
 - Regression: LASSO/Ridge
 - Classifications: Tree-based methods
- Types of data:
 - Tabular
 - Text: sentiment analysis
 - Networks: centrality and community detection

Last remarks

Exam: Tuesday June 25th 11.00-13.00 (BETA EDUC)

- 1. Test moment: Please make sure you can see it on Remindo. Otherwise email Dr. Giachanou.
- 2. Practice exam: Already available on Remindo. Otherwise email Dr. Giachanou.
- 3. Special provisions: if you have special provisions, you should have received an email from Dr. Giachanou. If not, please email her again.

Exam review: July 2nd 12.00-12.45 (RUPPERT 002)

Last 10 minutes: Fill the evaluation forms (link in your email inbox)